Masala #52XCO7KPA2
Zindon Maksimum
Siz katta ehtimol bilan bundan avvalgi topishmoqning javobini topolmagansiz, shu jumladan Rixsitilla va Zakariyo ham. Lekin Qo'riqchi ularga rahm qilmoqchi bo'ldi. U yana Rixsitillani ichida doska bo'lgan xonaga olib kirdi va ta'kidladiki shartlar bir xil: gaplashish mumkin emas, lekin xonaga kirishdan oldin maslahatlashish mumkin; yana shunday tangalar bo'ladi, bir tomoni 0, ikkinchisi 1 va Rixsitilla shu tangalardan birini o'girib Zakariyoga kalit qayerdaligini aytishi kerak; agar bu gal topolmasa umrbod zindonga tushadi; bu gal doska \(8\times8\) bo'lish o'rniga \(N\times N\) bo'ladi, va bu sahar doskaning ma'lum katagi qandaydir A1 dan H8 gacha emas, 1 dan \(N^2\)gacha raqamlab chiqilgan va bunda quyidagicha tartiblangan:
\[\begin{matrix} 1 & 2 & 3 & \cdots & N \\ N+1 & N+2 & N+3 & \cdots & 2N \\ 2N+1 & 2N+2 & 2N+3 & \cdots & 3N \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ N(N-1)+1 & N(N-1)+2 & N(N-1)+3 & \cdots & N^2 \end{matrix}\]Siz shu kiritilgan doskaning qaysi tangasini Rixsitilla o'girishi Zakariyoda kalit qayerdalini topib berishini topishdir.
Birinchi qatorda \(N\) va \(M\), doskaning o'lchami va kalit qaysi katakda yashiringani kiritiladi. \((1\le N\le 10^3; 1\le M\le N^2)\)
Keyingi \(N\) qatorda uzunligi \(N\) bo'lgan \(a_i\), doskaning \(i\)-qatorining ko'rinishi kiritiladi. bunda belgi \(b\) \(a_i\)ning bir qismi bo'lib, \(b_i\in\{0, 1\}\)
Yagona qatorda masalaning javobini chop eting. Agar bunday doskada birorta tangani o'zgartirishning ham ma'nosi bo'lmasa, ya'ni javob yo'q bo'lsa -1 chop eting.
# | input.txt | output.txt |
---|---|---|
1 |
7 43 1010001 1011111 0001100 0110101 1111000 0111001 1100111 |
-1 |
2 |
2 2 00 00 |
2 |
3 |
16 194 1010010010000011 0110001100010000 0100111100100001 1111001000110100 1000101100101000 1000010010001011 1001001100011110 0001110100111110 1000001111001001 0101110110011000 0111000111101110 0011001011001001 1110011111001100 0111100111000001 0101100010000001 0101101101111111 |
107 |