Masala #PJPMACT0SI
sum_sum
1 dan boshlab dastlabki \(n\) ta sonning yig’indisi quyidagi funksiya orqali ifodalanadi:
\(sum(n) = 1+2+3+...+n-1+n\)
Salim ushbu funksiyadan foydalanib o’qiga yangi nomli funksiyani yaratdi va uni quyidagi kabi ifodaladi:
\(sum\_sum(n)=sum(1)+sum(2)+...+sum(n-2)+sum(n)\)
Salim \(sum\_sum(10^9+7)\)ni hisoblash chog’ida hisobdan adashib ketti va unga endi sizning yordamingiz kerak.
Birinchi qatorda \(t\), testlar soni kiritiladi.
Keyingi \(t\) qatorda bir dona butun son \(n\) kiritiladi.
- Subtask #1: \(t = 1;1\le n\le100\) (10 ball)
- Subtask #2: \(t\le10;1\le n\le10^4\) (15 ball)
- Subtask #3: \(t\le1000;1\le n\le10^4\) (20 ball)
- Subtask #4: \(t\le10^4;1\le n\le10^5\) (25 ball)
- Subtask #5: \(t\le10^5;1\le n\le10^6\) (30 ball)
Har bir test uchun natijani alohida qatorda \(10^9+7\)ga bo'lgandagi qoldiqni toping.
# | input.txt | output.txt |
---|---|---|
1 |
1 1 |
1 |
2 |
1 2 |
4 |